IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Scattering with a periodically kicked interaction and cyclic states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 385
(http://iopscience.iop.org/0305-4470/31/1/032)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.121
The article was downloaded on 02/06/2010 at 06:25

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger31 (1998) 385-396. Printed in the UK PII: S0305-4470(98)86272-0

Scattering with a periodically kicked interaction and cyclic
states

Thomas Kovar and Philippe A Martin
Institut de physique #orique, Ecole Polytechniqueerale, CH-1015, Lausanne, Switzerland

Received 24 July 1997

Abstract. A quantum-mechanical particle kicked by a rank 1 perturbation is a solvable model

of a scattering system with a time periodic Hamiltonian. We study its spectral properties and
compute explicitly the scattering quantities. Below a critical value, there are certain ranges of
periods for which the system has stable states under the time evolution (cyclic states). These
cyclic states lose their stability as the period increases and may be transformed into resonances.
This is an example of the general phenomenon of stabilization of quantum states under a high-
frequency perturbation.

1. Introduction

Scattering of a quantum-mechanical particle by a short-range time periodic potential plays
an important role in a variety of problems ranging from tunnelling through a modulated
barrier to atoms in laser fields. Although the general formalism is well developed [1, 2],
it is notoriously difficult to perform explicit calculations of scattering probabilities. In this
paper, we present a solvable model, the periodically kicked potential, that may serve as an
illustrative paradigm of several typical phenomena.

We consider a system described by a free Hamiltotigkicked by a rank 1 interaction
with period T. The total Hamiltonian reads formally

H(t) = Ho+ Lf (D)) (¢l 1)
with
f@=T Y 8t—nT). 2)

The free HamiltoniaH, = [ E dP(E) is a self-adjoint operator on a Hilbert spakewith
simple absolutely continuous spectral measuré ) supported in the interval [(Eq]. For
convenience, we also sometimes use the formal Dirac notatt(Ed = |E)(E|dE with
(E|E"y =68(E — E'), E, E"in [0, Eg], and the convention thaf)(E| vanishes outside of
the spectrum ofHy. The normalized vectdiy) in H is represented by the functign(E) in
the spectral representation Hf, andi|¢){¢]| is the corresponding rank 1 perturbation with
coupling constani. Throughout the paper we assume thar) is absolutely continuous
and does not vanish on the spectrummy, except possibly at its extremitieds = 0 and

E = Ep. By conventiong(E) is equal to zero outside of [&p]. The kick function £ (¢)

is normalized to have its time average over one period equal #)[Q,T f@de =1.
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The evolution operatol/ (¢) associated with the formal Hamiltonian (1) acts as follows.
For 0<t < T, the system evolves fregly
U(r) = Up(t) = e ot O<r<T. ©)
Just after the first kick, that occurs at tiriie one has
U(T,) = yLnOU(T + 1) = g T g T1@) @] 4)

and the evolution continues perodically in this way. We denote simply the free evolution
over one period by/, = e T and the corresponding total evolution (the Floguet operator)

by

U=U(T}) = UoI + ule)(el) (5)
where

p=e"*"_1 (6)

The simple form (5) results from the fact thiat) (¢| is a projector.

The spectral properties dff have been studied by Combescure [3] whiég has a
pure point spectrum, and there is a large literature on kicked Hamiltonians with discrete
spectrum (kicked rotator, kicked oscillator) corresponding to confining potentials (see for
instance [4]). However, to our knowledge, less attention has been paid to the case when
Hy has a continuous spectrum allowing for scattering processes.

The spectral theorem for unitary operators yields

2
U= / e " dF(9) (7)
0

21
U = / e ' dFy(0) (8
0

where dF () and dFp(9) are spectral measures on the unit cifcl&@he spectral measures
of Uy and Hy are related by

0+ 2rn\ [0+ 27n| do
dFo(e)=Xn:‘ ; >< |7 0<6 < 27. (9)
This results from the identity
Eo 6| do
U = / e 'ET|EY(E|dE = e ><‘ —
0 T| T
2rn
It is useful to introduce also the frequeney= 27” and the quasi-energy by setting for
any E
E=nw+e (11)

T We set the Planck constant equal to 1.

1 The sign of the phase factors in (7) and (8) is opposite to that appearing in the usual formulation of the spectral
theorem for unitary operators. This is to match the standard definition of the quantum mechanical evolution
(3). Here we call spectrum df (Up) the support of the spectral measurg(d) (dFp(#)) with the present sign
convention.
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wheren is the integer part oﬁ, and 0< € < w; in particular Eg = now + €p. In terms of
the quasi-energy variable= % 0< 6 < 27, one has

dFy(e) = Z le + nw) (€ + nw| de. (12)

The periodlp = %’; will be called the critical period, corresponding to the critical frequency
wo = Eg. ForT < Ty, one hasy = Ep, ng = 0, and only the terne = 0 occurs in (9);
hencelUy has absolutely continuous spectrum on the sectdip[& EqT] of the unit circle,

0o < 27. If T > Ty, there is no gap: one sees in (10) that the spectrugoivraps the
unit circle ng times. ThuslUy has absolutely continuous spectrum on the whole circle with
multiplicity no+ 1 if 0 < 0 < T, andng if g7 < 6 < 27.

The main phenomenon that will be described in the remainder of the paper is as follows.
Since the Floquet operatdr differs from Uy by a finite rank perturbation (see (5)), general
stability theorems [5] ensure that it will also have an absolutely continuous spectrum in
[0, 6g]; however, forT < Tp, U may acquire an additional discrete pointi“e with
eigenphase. in the secton6y, 27). The corresponding eigenvectgt, also called cyclic
state, is stable in the sense that it is left invariant by the evolution over one period

Uy, = g i Ve a. =€, T Oy < ap < 27. (13)

As T increasesg,. moves on the circle and for a certain peritd < Tp it may reach the
threshold of the continuous spectrum eithepat 0 or atd = 6;. For T > T, the cyclic

state loses its stability, and if the coupling functipnhas suitable properties, it may be
transformed into a long-living resonance seen in the scattering amplitude. No cyclic state
can survive if the period becomes larger th&gnbecause then the spectrum @fwill be
absolutely continuous on the whole circle. The perfgds said to be critical since in this
model, no state can remain stable under the time evolution beyond the closure of the gap
at 7Tp.

This situation is an explicit example of stabilization under high-frequency motion (see
for instance [6] in a classical context and [7, 8] in atomic physics) which can be understood
here as follows. In the high-frequency limit, it is known that a system submitted to a time
periodic potential is governed by an effective static Hamiltontambtained by averaging
the interaction over one period ([9] and references there). In our case we have

H = Ho+ Alg) (gl (14)
as follows also from (4) and the Trotter product formula: the evolution

v Ho Aol V)
U _<exp<—|N>exp(—| N )>

after N periods of durationT = % tends to exp-iH) as N — oo. It turns out that
whenT > 0 is sufficiently small, the cyclic stat¢. for the time-dependent evolution (1)
with quasi-energy, is close to an eigenvector ¢f ande. reduces to the corresponding
eigenvalue off as7 — 0. So in the range of periods @ T < Ty, the time periodic
evolution inherits the properties of that generated by a static Hamiltonian: an eigenvector
of H is turned into a cyclic state, but this stability does not extendrfos Tg.

We construct the cyclic state in section 2. In section 3 we give general expressions for
the wave operators in terms of the resolvent of the Floquet operator (the equivalent of the
usual Lippman—Schwinger equations) and apply them to our model in section 4. We find
simple formulae for the scattering matrix: we verify there the validity of Levinson’s theorem
and discuss the problem of resonances. Concluding remarks on possible generalizations are
presented in section 5.
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2. Existence of cyclic states

Here we follow closely the arguments of section 2 of [3] where conditions for the existence
of point spectrum ot/ are given.

For any complex numbey, |z| # 1, we introduce the resolvef®t(z) = (U —z)~* of the
Floquet operator. The solvability of the model relies on the fact that one can exptess
explicitly in terms of the free resolvemRo(z) = (U — z)~%. The first resolvent identity
yields

R(z) = Ro(z) — rle){¢IR(z) — 21t Ro(2) @) (@I R (2) (15)
which implies for anyyr

(¢|Ro()1¥)

(WIR@IY) = ——F—— (16)
ng(z)
with
1

gm=1+;+wwmamm. (17)

Then calculatingR(z)|y) from (15) and (16) gives the relation
1
R() = (1 = |<p><¢|) Ro(z) — —— Ro(2)19) (¢ Ro (). (18)
g(2) g(2)

To find the spectrum o/ we have to examine the singularities Bfz) on the unit
circle. Setz = e '@*" 5 > 0. One has from (17)

- 1 1 [% 6\|? 1
—i(axin)y - - _ - =
g(e )=1+ " + T /o do ’(p (T) o iO—aFin _ 1 0o = EoT
[ AT 1 (% 0\|? 0 —aFin
= _| cot| = — do — )| cot| ———— 19
() 7 [ok(@)=(5) w9
where the second line results from the forml@{%gﬁl = —%(1+ icot(3)); cotx is singular

at the pointsuzr, n integer, and behaves &s — nx)~! near these points.

Suppose thaf < Tp. Then Ro(z) is holomorphic everywhere except on the sector
0 < 6 < 6p where it has a discontinuity corresponding to the absolutely continuous spectrum
of Hp, so formula (18) shows that point spectrum comes from the zerg@$z0f Forz on
the circle,z = e '@ with 6y < o < 27, the integrand in (19) has no singularities and)
vanishes ifa is a solution of the eigenvalue equation

1 [% N[> (06—« AT
h(a) = ?/(; do ‘(p (T> cot<2> = —COt(z) 0o < @ < 27. (20)

Since% cotx = —ﬁ, the functioni(«) defined in (20) is monotonously increasing
in the sectordy < o < 27 betweenh(6y) and h(2r) = h(0). Hence, it has exactly one
solutiona,. = ¢.T, 6y < a,. < 27 if

h(6g) < —Cot<)\2T> < h(2m). (21)

We distinguish the following cases.

(i) h(6g) = —o0, h(0) = co. Then (20) has a solution for dlt < Ty and all coupling
constantsi, provided that:] = nz. This case occurs for instance ¢f(0) # 0 and
¢(Ep) # 0 causing a logarithmic divergence bfx) ata = 6y anda = 2.
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(0, T)

I b4 ‘
h(6o,T)

Figure 1. Intervals of stability. HereEg = 1, Top = 27, ¢(E) = V30E(E — 1), » = 4. One
has the symmetry(E) = (1 — E), h(6p, T) = —h(0, T).

T; ; To T

(ii) One of the quantitie®(6p) andh(27) = h(0) (or both) are finite. Then fof < Ty,
equation (20) has a solution % belongs to a certain range of values defined by condition
(21), consisiting in general of an union of semi-infinite or finite intervals (called stability
intervals) because of the periodicity of (:g?i). In this casep(E) has to vanish at one or
both of the pointsE = 0, E = E;. We may assume for instance

¢(E) ~ constantE” E—-0
¢(E) ~ constant(E — Eg)" E — Eg v > 0.
Stability intervals are illustrated in figure 1 and discussed in more detail in section 4.

In either of the two cases this produces a single pole in the resolvent (18), and thus an
eigenstate/. of U satisfying (13). One verifies that
@(E)

Ve(B) = Srrgmy (23)
wherea is a normalization constant. One also sees that the eigenvalue equation (20) as
well ase, and . reduce to the corresponding quantities for the static Hamiltonian (14) as
T — 0. '

If T < Tobut 0<a < 6, cot(’"%7") ~ 075$in is singular ford = « asn — 0 and
the Cauchy principal value formula gives

|im0g(e—““i‘">) = FA(x) +iB(a) (24)
n—

(22)

with

=2l (2)f =

0 2 —
ro=Yoo(D) e M w e () en("5%)) o

Sincep(E) does not vanish on the spectrum Hf by assumptiong(z) does not vanish
either on the sector 6< o < 6p. In this sector,R(z) has a discontinuity that can be
calculated from (18) in terms of those &h(z) andg(z). Since both the spectral measure
of Up and the functionp(E) are supposed absolutely continuous, the same is true for the
spectral measure df in this sector (a discussion of the endpoifts= 0 andE = Ey will

be given in relation with the resonances in section 4).
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If T > To, one applies the principal value formula at all the singular pdintsa + 2nm
occurring in the integrand of (19) and formula (24) still holds with (25) replaced by

2
A@=73" ’(p ("‘f””)‘ . 27)

The spectrum offy wraps the unit circle an®o(z) is discontinuous on the whole circle:
the situation is as that just described above and the spectrdm®oéverywhere absolutely
continuous.

Therefore, as long as @ T < Ty, we can have a cyclic state (certainly in the case (i)
and for appropriate values afand T in case (ii)), but cyclic states cannot persist when
becomes larger thafy.

3. The Lippman-Schwinger equations and thel’-matrix

In complete analogy with the scattering theory for time-independent potentials, we establish
the equivalent of the Lippman-Schwinger equations for our problem and give an explicit
form of the scattering matrix in terms of the resolvent of the Floquet operator.

The following derivation applies to time periodic scattering systems with interacting
evolutionU (ty, t) and free evolutiorUy(1o, t) that form a complete scattering system. It is
assumed that the wave operat®s are defined as the usual strong limits An

Q1 = s-limU*(0, £1)Up(0, *¢) (28)
11— 00
and are complete in the sense that the rari@€Q.) of both wave operators are equal,
leading to a unitary scattering operatbe= Q* Q_. LetU = U(0,T) andUp = Up(0, T)

be the evolution operators over one period. Note that by periodicity and unitarity
U=U0,T)=U(-T,0 =U(,—-T)*, and the same fot/y = Up(0, —T)*, SO

Qp =s-limU*"U§ (29)

Q_ =slimu™Ug)". (30)

The desired integral representation$ef is based on the following lemma.

Lemma.Let B, be a sequence of bounded operators Wi)| < 1 converging strongly to
B asn — oo andé < 1; then

B = il)lll“[\(l —£) ;g B,. (31)

Proof. For ¢ € H and& < 1,

HBw -(1- é)ZE”anH =1-8
n=0

> & By — B"‘”)H

n=0
N 00

<S@A=8)) |IBYy — Byl +@A—8)) &"|BYy — B,y|.
n=0 N

ChoosingN so large that| By — B, v || < &,n > N, the second term is less thamniformly
with respect tat, and the first term tends to zero s~ 1. O
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We apply the lemma to the limits (29) and (30)
Q; = slim - &) > & U U
- n=0

27
=s-lim1— &) L—eU*e)y1dFy(0)
E—1_ 0

21
=slmd—¢) | U - £e7") 71U dFo () (32)
-4 0

where the second line results from the introduction of the spectral representation (8). Thus
we find

on
I—-Qy = ?-"{ﬂ/ (I— (- DU — &) TU) dFy(6)
-1 Jo
2n
= ?—Ii{n/ (U — 7)Y (U — ey dFy(0). (33)
-1 Jo
In & similar way, with = ¢ > 1

Q =slim1-§ 3 &U" WUy

n=0
2
= slim¢ — 1) e —U) e dFo(9) (34)
-1, 0
and
27[ . .
I —Q_ = ?-Ii{n (I = =Dce —u)te ) dFy )
—> + 0
271 . .
= §-Ii{‘n/ e — Uy Xe — U)dFy (). (35)
— + 0

Settingé = e, ¢ = €', n > 0, both relations (33) and (35) can be written in the traditional
form of the Lippman—Schwinger equations

2w
QL=1-— s-Iign/ R(e7'OFmyW dFy(0) (36)
n—Y4+ Jo
where the ‘interactionW = U — Uy is represented by the difference of the Floquet operator
and the corresponding free evolution. The integral representati@ei.of obtained from
the fact that orR = R(Q2_) = R(2y)
Q= s-limUg)"u"
Q" =sIlimUiU*)".
Thus, by exchanging the roles 6% and U in the derivation (32)—(35), one finds ¢
2w
QL =1+ s-Iign/ Ro(e”'CFMyW dF (6). (37)
n—Y+ Jo
Then theS operator is found from the usual manipulations
S—1=(Q -QHQ_ = s-Iim/ {Ro(e™'~)) — Ro(e7'“TMNWQ_ dFy(9)
0

v—>04

2
= s-lims-lim / {Ro(e™ ™)) — Ro(e'@+")}
0

v—>0; n—04

x{W — WR(e MW} dFy(0). (38)
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The second line results from (37) and from the intertwining relatidn(2_. =
Q_dFy(0). To obtain the third line, we have introduced (36) and used the formal relation
dFo(0) dFp(9) = 8(0'—0) do’ dFy(0). Representation (38) of the scattering operator defines
the 7 -operator by

T =W—WREZW (39)

in analogy with its usual definition when the interaction is time independent.
To express the matrix elements of the scattering operatar nw|S|e’ + n’w) in the
energy representation we introduce (12) in (38) setfing ¢’ T

S — I =s-lims-lim>" / de” {Ro(e™“ ™) — Ro(e™' "))
0

v—>0; n—04 70
xT (€M) e + n"w)(e” +n"wl. (40)
Using the fact that in the spectral representatiorHpfthe difference of the free resolvents
occurring in (40) is the following function of the quasi-enekgy

1 1
il _ gi(e'T—iv)  giel _ gi(e"T+iv)

o
— %e'GT(S(e —€") asv— 0 (41)

one finds that theS-operator can be reduced to the quasi-energy shell mé&geix
(€ +nw|S|e’ +n'w) = §(e — €)(n|S(e)|n") (42)
with (n|S(e)|n’) given by

jeT

. 2mé
(n|(S(e) = Dn") =

Iim0 (€ + no|T (€ CTHM) e 4+ n/w) (43)
]’)—)

with €, n andn’ such that botke + nw ande + n’w belong to the spectrum [&,] of Hjp.
The derivation presented here is formal, but it can be justified by adapting the proofs
of section (6.2) of [10] to our case.

4. Scattering and resonances
We apply the general results of section 3 to our system. From (5) weWaxeuUp|p) (@]
so (39) gives

T (z) = n(1 — ulp|R(2)Uolp))Uolg)(pl. (44)
But in view of (16) and (17)

Ro(2)U
19| R(2)Uolg) = {¢IRo(z)Uol9)

8(2)
_ 1+ zlplRo@le) _, 1 (45)
8(2) ng(z)
so that
1
T(z) = ——Uolp){el. (46)
8@2)
Hence according to (43) and (24) the scattering matrix is
n_ 21 (@€ +nw)g*(e + n'w)
(n]S(€)In") = épw + T < “AET) +1BET) ) (47)
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with € + nw ande 4+ n’w in [0, Eg]. The energy conserving transitions
n = n’ are referred to as the elastic channel, and the transitionsmwith’ (corresponding
to emission or absorbtion @i — n’)w energy quanta) as the inelastic channels.

If T < Ty, necessarilyn, n’) = (0, 0); only the elastic channel is open and from (25)

A(eT iB(eT
Soo(€) = (n = 0|S(e)|n" = 0) = —;EeT))—i_—FIiB(EeT))

0<e<Eo (48)

is a pure phase factor.

If Ty < T < 2Ty, in addition to the elastic channét, n’) = (0, 0), (1, 1), one has
the two inelastic channeld, 0) and (0, 1) allowing for the emission or absorbtion of one
guantumw. As T increases more inelastic channels become open. It is not hard to verify
on (47) that theS-matrix satisfies the general unitarity relation

D lmlS@In) P =" [nIS(e)n)? = 1. (49)

We now come to the relation of th&matrix with the cyclic states and the question of
the resonances.

First, we verify Levinson’s theorem. Suppose tffatc Tp and that we have a cyclic
state as described in section 2. We define the scattering phase’ @hifin the elastic
channel by

Soo(e) = & (50)
i.e. from (48)

B(eT) T
8(e) = arctan( ) + 3

A(eT)
In view of (21) one hasB(EoT) = B(fo) = 3(cot(*)) + h(fp)) < 0 andB(2r) = B(0) =
Z(cot(*]) + 1(0)) > 0. Eitherh(6p) = —oo, or h(8) is finite andp(Eo) = 0. Hence, in

both cases lin., g, ﬁg; = —o0, and in the same way, limo ﬁg; = oo. This implies

8(0) — 8(Eo) = 7. (52)

If there is no cyclic state, the inequality (21) does not hoR{:EqT) and B(0) have the
same sign, and <7 tends tooco (or —oo) in both limitse — Eo ande — 0, leading to

8(0) — 8(Eg) = 0. (53)

The relations (52) and (53) constitute the Levinson theorem for the present model. The
validity of Levinson'’s theorem for more general time periodic potentials has been established
in [11] in the framework of the quasistationary equations.

To discuss resonances in a definite situation, we assume thatis differentiable and
that condition (22) in case (ii) of section 2 holds with> % Then, writing now explicitly
the period dependence in the functib, T) (20) we have that

— % < arctamx < % (51)

Eo
h(,T) = dE|cp(E)|200t<EZT>
0

(E — Eo)T) &9

Eo

h(6o, T) = dE|go(E)|200t< 6o = EoT
0

2

are finite forT > 0; (0, T) — oo asT — 0 and is decreasing in the intervakQT < Tg.
Likewise h(6p, T) — —oo asT — 0 and increases in this interval and both functions
coincide atTy. In view of condition (21), for fixed\, this determines a number of intervals
of stability (7;, 7)), i = 1,2, ..., where we will have a cyclic state (see figure 1). As
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varies in(7;, T/) andx > 0, the cyclic state emerges from the continuum thresbglat 7;
and migrates towards the other threshaotd2 0 (mod 2r) where it is absorbed &t/

More specifically, consider a periddl in the interval(7;, /), T close to7. = 7T,/ and
define the functionB(«, T) on the whole circle by

B(a,T) = % <cot<)g> + h(a, T)) (55)

for 60 < a < 27 and by expression (26) for & o« < 6p. The conditions above
on ¢(E) imply that B(a, T) is continuously differentiable inx and T for (o, T) in a
neighbourhood of0, 7,.) and %B(a, T)|g=o0,r=r. > 0. Then the implicit function theorem
ensures thaB(«, T) has a differentiable zera(7T) for T in a neighbourhood of. and
B(a,T) ~ b(ae — a(T)), b > 0. ForT belowT,, a(T) = a. = ¢.T is the eigenphase of
the cyclic states (see (20)), whereas fojust aboveT,, «(T) = o, = ¢, T is the location
of a resonance with quasi-energy Indeed, from (48)|Soo(¢) — 1| (and the cross section
which is proportional to it) will have the Breit—Wigner form

B 2(A(eT))?
~ (B(eT))?+ (A(eT))?
2r?
- (€ —€)2+T2 (56)

whenT is close toT, (T > T,), and|e — ¢,| < ¢,. By (25) and (22) the widtl", of the
resonance (the inverse life time) behaves as

|Soo(e) — 1)2

r A(e, T) T o )|2
r = = —5 6}‘
b bT2"?
=~ constant? ~ constant(T' — 7,)%’ (57)

asT — T..
Note that atT = T, we still have a cyclic state with quasi-energy= 0 that coincides
with the threshold of the continuous spectrum. Since the r§fi¢; behaves there as

€% — 00, € — 0, one still obtains the Levinson relation (52).

All these considerations can of course be reproduced for peffioitsthe vicinity of
T; when the eigenphase of the cyclic state is close to the other thregholthe number
of intervals of stability giving rise to cyclic states decreases as the coupling constant
becomes weaker. A special situation is obtained for the value % such that cqt%)
has its first zero afy. Then a cyclic state can remain present until the closure of the gap
at the critical periodly and be transformed into a resonance bey@nd

IfO0 <v< % the functionB(a, T) is still continuous but no more differentiable, and
threshold behaviours must be studied in more detaik(K) does not vanish at one or the
other threshold, we will have no resonance there. Nothing is said here about resonances
that may appear far from the thresholds due to particular properties of the fuctttn

For brevity, we have assumed that the spectrurilgfs simple. If it has a multiplicity
indexed by parametetsit suffices to replace the (improper) eigenenergy ketsby |E, o).

The matrix elements of (E) will be indexed both by and the channel indices but the
results remain the same.

We conclude this section with an example. Consider the scattering of an electron on the
one-dimensional lattic¢ja, j = ..., —1,0,1,...}, with spacinga, by a kicked impurity
Af(1)]g)(p| located at the originj = 0, ¢(j) = 8;0. The free Hamiltoniany = —1A,
is the finite difference Laplacian with energy dispersié(p) = 1 —cosp, -7 < p < 7.
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In the spectral representatiof, o) of Hy (0 = +1 corresponding to positive or negative
momentump), one finds

1

1
2r (1= (E— D)% ©9

@(E,0) = (E,olp) =

Here ¢(E, o) does not vanish at the endpoinis= 0 and E = 2 of the free spectrum so
that we are in case (i) of section 2. There will be a cyclic state for all perié}is;é(nn)
up to Tp = r but it will not give rise to a resonance.

5. Concluding remarks

In this paper, we have analysed a solvable model of a scattering system with a time periodic
interaction whose Floquet operator has both continuous and point spectrum. We emphasize
that this situation is much more general than that presented by means of this particular
examplg. Consider a free Hamiltoniaily that has absolutely continuous spectrum in

[0, Ep] and a bounded smooth time periodic interactlo@) with period 7, and letU (0, ¢)

be the evolution operator associated to the Hamiltorfian) = Hy + V (¢). Suppose for
instance that, in addition to continuous spectrum inHgl, the time-averaged Hamiltonian

H = %fOT dr H(r) has an isolated non-degenerate eigenva@lu®roceeding as in the proof

of proposition 2 of [8] (the high-frequency limit), one obtains the operator norm estimate

1U, 1) —e 1| = O(T) (59)

provided thatt is bounded away from 0. Fix > 0 (small) such that €' is an isolated
eigenvalue of €/’ on the unit circle. Then Rellich’s theorem ensures that fosmall
enough,U (0, r) also has an eigenvalue'&" close to it. Fors of the forms = NT,
N integer, we haveU (0, T))Y = U(0, NT)), and this implies that the Floquet operator
U(0, T) has also an eigenvalue'®& with «(NT) = Na. In particular, the qualitative
findings of this paper remain true ff(¢) (2) is replaced by a smooth periodic functionrof

This shows that this mechanism gives rise to cyclic states of the Floquet operator and is
very general, provided that the averaged Hamiltonfauhas eigenvalues and the spectrum
of Hp is bounded. If the spectrum df, consists of a finite number of bands, cyclic states
can appear in all the gaps at high frequencyHifis unbounded, a rank 1 perturbation may
induce qualitative changes: for instance the discrete spectrum of the free rotator may be
transformed into a singular continuous one [13, 14]. In our class of models, if the spectrum of
Hy is not bounded, say extends on §d), U (0, T) will also have an absolutely continuous
spectrum on the circle, but without gap however short the period may be. Then it is likely
that the eigenstates & are turned into resonances of the Floquet operatofffor 0. It
is an open question to know if the Floquet operator can have other types of cyclic states
embedded in its absolutely continuous spectrum. We plan to come to these problems in
future work.
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1 The phenomena described in this paper have been observed numerically in the stability analysis of certain
excitations (breathers) of an anharmonic classical chain [12].
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