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Received 24 July 1997

Abstract. A quantum-mechanical particle kicked by a rank 1 perturbation is a solvable model
of a scattering system with a time periodic Hamiltonian. We study its spectral properties and
compute explicitly the scattering quantities. Below a critical value, there are certain ranges of
periods for which the system has stable states under the time evolution (cyclic states). These
cyclic states lose their stability as the period increases and may be transformed into resonances.
This is an example of the general phenomenon of stabilization of quantum states under a high-
frequency perturbation.

1. Introduction

Scattering of a quantum-mechanical particle by a short-range time periodic potential plays
an important role in a variety of problems ranging from tunnelling through a modulated
barrier to atoms in laser fields. Although the general formalism is well developed [1, 2],
it is notoriously difficult to perform explicit calculations of scattering probabilities. In this
paper, we present a solvable model, the periodically kicked potential, that may serve as an
illustrative paradigm of several typical phenomena.

We consider a system described by a free HamiltonianH0 kicked by a rank 1 interaction
with periodT . The total Hamiltonian reads formally

H(t) = H0+ λf (t)|ϕ〉〈ϕ| (1)

with

f (t) = T
∞∑

n=−∞
δ(t − nT ). (2)

The free HamiltonianH0 =
∫
E dP(E) is a self-adjoint operator on a Hilbert spaceH with

simple absolutely continuous spectral measure dP(E) supported in the interval [0, E0]. For
convenience, we also sometimes use the formal Dirac notation dP(E) = |E〉〈E| dE with
〈E|E′〉 = δ(E − E′), E,E′ in [0, E0], and the convention that|E〉〈E| vanishes outside of
the spectrum ofH0. The normalized vector|ϕ〉 in H is represented by the functionϕ(E) in
the spectral representation ofH0, andλ|ϕ〉〈ϕ| is the corresponding rank 1 perturbation with
coupling constantλ. Throughout the paper we assume thatϕ(E) is absolutely continuous
and does not vanish on the spectrum ofH0, except possibly at its extremitiesE = 0 and
E = E0. By convention,ϕ(E) is equal to zero outside of [0, E0]. The kick functionf (t)
is normalized to have its time average over one period equal to 1,1

T

∫ T
0 f (t) dt = 1.
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The evolution operatorU(t) associated with the formal Hamiltonian (1) acts as follows.
For 0< t < T , the system evolves freely†

U(t) = U0(t) = e−iH0t 0< t < T . (3)

Just after the first kick, that occurs at timeT , one has

U(T+) = lim
τ→0

U(T + τ) = e−iH0T e−iλT |ϕ〉〈ϕ| (4)

and the evolution continues perodically in this way. We denote simply the free evolution
over one period byU0 = e−iH0T and the corresponding total evolution (the Floquet operator)
by

U = U(T+) = U0(I + µ|ϕ〉〈ϕ|) (5)

where

µ = e−iλT − 1. (6)

The simple form (5) results from the fact that|ϕ〉〈ϕ| is a projector.
The spectral properties ofU have been studied by Combescure [3] whenH0 has a

pure point spectrum, and there is a large literature on kicked Hamiltonians with discrete
spectrum (kicked rotator, kicked oscillator) corresponding to confining potentials (see for
instance [4]). However, to our knowledge, less attention has been paid to the case when
H0 has a continuous spectrum allowing for scattering processes.

The spectral theorem for unitary operators yields

U =
∫ 2π

0
e−iθ dF(θ) (7)

U0 =
∫ 2π

0
e−iθ dF0(θ) (8)

where dF(θ) and dF0(θ) are spectral measures on the unit circle‡. The spectral measures
of U0 andH0 are related by

dF0(θ) =
∑
n

∣∣∣∣θ + 2πn

T

〉 〈
θ + 2πn

T

∣∣∣∣ dθ

T
06 θ < 2π. (9)

This results from the identity

U0 =
∫ E0

0
e−iET |E〉〈E| dE =

∫ θ0

0
e−iθ

∣∣∣∣ θT
〉 〈
θ

T

∣∣∣∣ dθ

T

=
∑
n

∫ 2π

0
e−iθ

∣∣∣∣θ + 2πn

T

〉 〈
θ + 2πn

T

∣∣∣∣ dθ

T
θ0 = E0T . (10)

It is useful to introduce also the frequencyω = 2π
T

and the quasi-energyε by setting for
anyE

E = nω + ε (11)

† We set the Planck constant equal to 1.
‡ The sign of the phase factors in (7) and (8) is opposite to that appearing in the usual formulation of the spectral
theorem for unitary operators. This is to match the standard definition of the quantum mechanical evolution
(3). Here we call spectrum ofU (U0) the support of the spectral measure dF(θ) (dF0(θ)) with the present sign
convention.
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wheren is the integer part ofE
ω

, and 06 ε < ω; in particularE0 = n0ω + ε0. In terms of
the quasi-energy variableε = θ

T
, 06 θ < 2π , one has

dF0(ε) =
∑
n

|ε + nω〉〈ε + nω| dε. (12)

The periodT0 = 2π
E0

will be called the critical period, corresponding to the critical frequency
ω0 = E0. For T < T0, one hasε0 = E0, n0 = 0, and only the termn = 0 occurs in (9);
henceU0 has absolutely continuous spectrum on the sector [0, θ0 = E0T ] of the unit circle,
θ0 < 2π . If T > T0, there is no gap: one sees in (10) that the spectrum ofH0 wraps the
unit circle n0 times. ThusU0 has absolutely continuous spectrum on the whole circle with
multiplicity n0+ 1 if 0 6 θ 6 ε0T , andn0 if ε0T < θ < 2π .

The main phenomenon that will be described in the remainder of the paper is as follows.
Since the Floquet operatorU differs fromU0 by a finite rank perturbation (see (5)), general
stability theorems [5] ensure that it will also have an absolutely continuous spectrum in
[0, θ0]; however, for T < T0, U may acquire an additional discrete point e−iαc with
eigenphaseαc in the sector(θ0, 2π). The corresponding eigenvectorψc, also called cyclic
state, is stable in the sense that it is left invariant by the evolution over one period

Uψc = e−iαcψc αc = εcT θ0 < αc < 2π. (13)

As T increases,αc moves on the circle and for a certain periodTc < T0 it may reach the
threshold of the continuous spectrum either atθ = 0 or atθ = θ0. For T > Tc, the cyclic
state loses its stability, and if the coupling functionϕ has suitable properties, it may be
transformed into a long-living resonance seen in the scattering amplitude. No cyclic state
can survive if the period becomes larger thanT0 because then the spectrum ofU will be
absolutely continuous on the whole circle. The periodT0 is said to be critical since in this
model, no state can remain stable under the time evolution beyond the closure of the gap
at T0.

This situation is an explicit example of stabilization under high-frequency motion (see
for instance [6] in a classical context and [7, 8] in atomic physics) which can be understood
here as follows. In the high-frequency limit, it is known that a system submitted to a time
periodic potential is governed by an effective static HamiltonianH̄ obtained by averaging
the interaction over one period ([9] and references there). In our case we have

H̄ = H0+ λ|ϕ〉〈ϕ| (14)

as follows also from (4) and the Trotter product formula: the evolution

UN =
(

exp

(
−i
H0

N

)
exp

(
−i
λ|ϕ〉〈ϕ|
N

))N
after N periods of durationT = 1

N
tends to exp(−iH̄ ) as N → ∞. It turns out that

whenT > 0 is sufficiently small, the cyclic stateψc for the time-dependent evolution (1)
with quasi-energyεc is close to an eigenvector of̄H and εc reduces to the corresponding
eigenvalue ofH̄ as T → 0. So in the range of periods 0< T < T0, the time periodic
evolution inherits the properties of that generated by a static Hamiltonian: an eigenvector
of H̄ is turned into a cyclic state, but this stability does not extend forT > T0.

We construct the cyclic state in section 2. In section 3 we give general expressions for
the wave operators in terms of the resolvent of the Floquet operator (the equivalent of the
usual Lippman–Schwinger equations) and apply them to our model in section 4. We find
simple formulae for the scattering matrix: we verify there the validity of Levinson’s theorem
and discuss the problem of resonances. Concluding remarks on possible generalizations are
presented in section 5.
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2. Existence of cyclic states

Here we follow closely the arguments of section 2 of [3] where conditions for the existence
of point spectrum ofU are given.

For any complex numberz, |z| 6= 1, we introduce the resolventR(z) = (U−z)−1 of the
Floquet operator. The solvability of the model relies on the fact that one can expressR(z)

explicitly in terms of the free resolventR0(z) = (U0 − z)−1. The first resolvent identity
yields

R(z) = R0(z)− µ|ϕ〉〈ϕ|R(z)− zµR0(z)|ϕ〉〈ϕ|R(z) (15)

which implies for anyψ

〈ϕ|R(z)|ψ〉 = 〈ϕ|R0(z)|ψ〉
µg(z)

(16)

with

g(z) = 1+ 1

µ
+ z〈ϕ|R0(z)|ϕ〉. (17)

Then calculatingR(z)|ψ〉 from (15) and (16) gives the relation

R(z) =
(
I − 1

g(z)
|ϕ〉〈ϕ|

)
R0(z)− z

g(z)
R0(z)|ϕ〉〈ϕ|R0(z). (18)

To find the spectrum ofU we have to examine the singularities ofR(z) on the unit
circle. Setz = e−i(α±iη), η > 0. One has from (17)

g(e−i(α±iη)) = 1+ 1

µ
+ 1

T

∫ θ0

0
dθ

∣∣∣∣ϕ ( θT
)∣∣∣∣2 1

e−i(θ−α∓iη) − 1
θ0 = E0T

= i

2

(
cot

(
λT

2

)
+ 1

T

∫ θ0

0
dθ

∣∣∣∣ϕ ( θT
)∣∣∣∣2 cot

(
θ − α ∓ iη

2

))
(19)

where the second line results from the formula1eix−1 = − 1
2(1+ i cot( x2)); cotx is singular

at the pointsnπ , n integer, and behaves as(x − nπ)−1 near these points.
Suppose thatT < T0. ThenR0(z) is holomorphic everywhere except on the sector

06 θ 6 θ0 where it has a discontinuity corresponding to the absolutely continuous spectrum
of H0, so formula (18) shows that point spectrum comes from the zeros ofg(z). For z on
the circle,z = e−iα with θ0 < α < 2π , the integrand in (19) has no singularities andg(z)
vanishes ifα is a solution of the eigenvalue equation

h(α) ≡ 1

T

∫ θ0

0
dθ

∣∣∣∣ϕ ( θT
)∣∣∣∣2 cot

(
θ − α

2

)
= − cot

(
λT

2

)
θ0 < α < 2π. (20)

Since d
dx cotx = − 1

(sinx)2 , the functionh(α) defined in (20) is monotonously increasing
in the sectorθ0 6 α 6 2π betweenh(θ0) and h(2π) = h(0). Hence, it has exactly one
solutionαc = εcT , θ0 < αc < 2π if

h(θ0) < − cot

(
λT

2

)
< h(2π). (21)

We distinguish the following cases.
(i) h(θ0) = −∞, h(0) = ∞. Then (20) has a solution for allT < T0 and all coupling

constantsλ, provided that λT2 6= nπ . This case occurs for instance ifϕ(0) 6= 0 and
ϕ(E0) 6= 0 causing a logarithmic divergence ofh(α) at α = θ0 andα = 2π .
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Figure 1. Intervals of stability. HereE0 = 1, T0 = 2π , ϕ(E) = √30E(E − 1), λ = 4. One
has the symmetryϕ(E) = ϕ(1− E), h(θ0, T ) = −h(0, T ).

(ii) One of the quantitiesh(θ0) andh(2π) = h(0) (or both) are finite. Then forT < T0,
equation (20) has a solution ifλT2 belongs to a certain range of values defined by condition
(21), consisiting in general of an union of semi-infinite or finite intervals (called stability
intervals) because of the periodicity of cot( λT2 ). In this caseϕ(E) has to vanish at one or
both of the pointsE = 0, E = E0. We may assume for instance

ϕ(E) ∼ constantEν E→ 0

ϕ(E) ∼ constant(E − E0)
ν E→ E0 ν > 0.

(22)

Stability intervals are illustrated in figure 1 and discussed in more detail in section 4.
In either of the two cases this produces a single pole in the resolvent (18), and thus an

eigenstateψc of U satisfying (13). One verifies that

ψc(E) = a ϕ(E)

e−i(εcT−ET ) − 1
(23)

wherea is a normalization constant. One also sees that the eigenvalue equation (20) as
well asεc andψc reduce to the corresponding quantities for the static Hamiltonian (14) as
T → 0.

If T < T0 but 0< α < θ0, cot( θ−α∓iη
2 ) ∼ 2

θ−α∓iη is singular forθ = α asη → 0 and
the Cauchy principal value formula gives

lim
η→0

g(e−i(α±iη)) = ∓A(α)+ iB(α) (24)

with

A(α) = π

T

∣∣∣ϕ ( α
T

)∣∣∣2 (25)

B(α) = 1

2

(
cot

(
λT

2

)
+ 1

T
P
∫ θ0

0
dθ

∣∣∣∣ϕ ( θT
)∣∣∣∣2 cot

(
θ − α

2

))
. (26)

Sinceϕ(E) does not vanish on the spectrum ofH0 by assumption,g(z) does not vanish
either on the sector 0< α < θ0. In this sector,R(z) has a discontinuity that can be
calculated from (18) in terms of those ofR0(z) andg(z). Since both the spectral measure
of U0 and the functionϕ(E) are supposed absolutely continuous, the same is true for the
spectral measure ofU in this sector (a discussion of the endpointsE = 0 andE = E0 will
be given in relation with the resonances in section 4).
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If T > T0, one applies the principal value formula at all the singular pointsθ = α+2nπ
occurring in the integrand of (19) and formula (24) still holds with (25) replaced by

A(α) = π

T

∑
n

∣∣∣∣ϕ (α + 2πn

T

)∣∣∣∣2 . (27)

The spectrum ofH0 wraps the unit circle andR0(z) is discontinuous on the whole circle:
the situation is as that just described above and the spectrum ofU is everywhere absolutely
continuous.

Therefore, as long as 0< T < T0, we can have a cyclic state (certainly in the case (i)
and for appropriate values ofλ andT in case (ii)), but cyclic states cannot persist whenT
becomes larger thanT0.

3. The Lippman–Schwinger equations and theT -matrix

In complete analogy with the scattering theory for time-independent potentials, we establish
the equivalent of the Lippman-Schwinger equations for our problem and give an explicit
form of the scattering matrix in terms of the resolvent of the Floquet operator.

The following derivation applies to time periodic scattering systems with interacting
evolutionU(t0, t) and free evolutionU0(t0, t) that form a complete scattering system. It is
assumed that the wave operators�± are defined as the usual strong limits onH

�± = s-lim
t→∞ U

∗(0,±t)U0(0,±t) (28)

and are complete in the sense that the rangesR(�±) of both wave operators are equal,
leading to a unitary scattering operatorS = �∗+�−. Let U = U(0, T ) andU0 = U0(0, T )
be the evolution operators over one period. Note that by periodicity and unitarity
U = U(0, T ) = U(−T , 0) = U(0,−T )∗, and the same forU0 = U0(0,−T )∗, so

�+ = s-lim
n→∞(U

∗)nUn
0 (29)

�− = s-lim
n→∞ U

n(U ∗0 )
n. (30)

The desired integral representation of�± is based on the following lemma.

Lemma.Let Bn be a sequence of bounded operators with‖Bn‖ 6 1 converging strongly to
B asn→∞ andξ < 1; then

B = s-lim
ξ→1−

(1− ξ)
∞∑
n=0

ξnBn. (31)

Proof. For ψ ∈ H andξ < 1,∥∥∥∥Bψ − (1− ξ) ∞∑
n=0

ξnBnψ

∥∥∥∥ = (1− ξ)∥∥∥∥ ∞∑
n=0

ξn(Bψ − Bnψ)
∥∥∥∥

6 (1− ξ)
N∑
n=0

‖Bψ − Bnψ‖ + (1− ξ)
∞∑
N

ξn‖Bψ − Bnψ‖.

ChoosingN so large that‖Bψ−Bnψ‖ 6 ε, n > N , the second term is less thanε uniformly
with respect toξ , and the first term tends to zero asξ → 1. �
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We apply the lemma to the limits (29) and (30)

�+ = s-lim
ξ→1−

(1− ξ)
∞∑
n=0

ξn(U ∗)nUn
0

= s-lim
ξ→1−

(1− ξ)
∫ 2π

0
(1− ξU ∗e−iθ )−1 dF0(θ)

= s-lim
ξ→1−

(1− ξ)
∫ 2π

0
(U − ξe−iθ )−1U dF0(θ) (32)

where the second line results from the introduction of the spectral representation (8). Thus
we find

I −�+ = s-lim
ξ→1−

∫ 2π

0
(I − (ξ − 1)(U − ξe−iθ )−1U) dF0(θ)

= s-lim
ξ→1−

∫ 2π

0
(U − ξe−iθ )−1(U − e−iθ ) dF0(θ). (33)

In a similar way, withζ = 1
ξ
> 1

�− = s-lim
ξ→1−

(1− ξ)
∞∑
n=0

ξnUn(U ∗0 )
n

= s-lim
ζ→1+

(ζ − 1)
∫ 2π

0
(ζe−iθ − U)−1e−iθ dF0(θ) (34)

and

I −�− = s-lim
ζ→1+

∫ 2π

0
(I − (ζ − 1)(ζe−iθ − U)−1e−iθ ) dF0(θ)

= s-lim
ζ→1+

∫ 2π

0
(ζe−iθ − U)−1(e−iθ − U) dF0(θ). (35)

Settingξ = e−η, ζ = eη, η > 0, both relations (33) and (35) can be written in the traditional
form of the Lippman–Schwinger equations

�± = I − s-lim
η→0+

∫ 2π

0
R(e−i(θ∓iη)W dF0(θ) (36)

where the ‘interaction’W = U−U0 is represented by the difference of the Floquet operator
and the corresponding free evolution. The integral representation of�∗± is obtained from
the fact that onR = R(�−) = R(�+)

�∗+ = s-lim
n→∞(U

∗
0 )
nUn

�∗− = s-lim
n→∞ U

n
0 (U

∗)n.

Thus, by exchanging the roles ofU0 andU in the derivation (32)–(35), one finds onR

�∗± = I + s-lim
η→0+

∫ 2π

0
R0(e

−i(θ∓iη))W dF(θ). (37)

Then theS operator is found from the usual manipulations

S − I = (�∗+ −�∗−)�− = s-lim
ν→0+

∫ 2π

0
{R0(e

−i(θ−iν))− R0(e
−i(θ+iν))}W�− dF0(θ)

= s-lim
ν→0+

s-lim
η→0+

∫ 2π

0
{R0(e

−i(θ−iν))− R0(e
−i(θ+iν))}

×{W −WR(e−i(θ+iη))W } dF0(θ). (38)
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The second line results from (37) and from the intertwining relation dF(θ)�− =
�− dF0(θ). To obtain the third line, we have introduced (36) and used the formal relation
dF0(θ

′) dF0(θ) = δ(θ ′−θ) dθ ′ dF0(θ). Representation (38) of the scattering operator defines
the T -operator by

T (z) = W −WR(z)W (39)

in analogy with its usual definition when the interaction is time independent.
To express the matrix elements of the scattering operator〈ε + nω|S|ε′ + n′ω〉 in the

energy representation we introduce (12) in (38) settingθ = ε′′T

S − I = s-lim
ν→0+

s-lim
η→0+

∑
n′′>0

∫ ω

0
dε′′ {R0(e

−i(ε′′−iν))− R0(e
−i(ε′′+iν))}

×T (e−i(ε′′+iη))|ε′′ + n′′ω〉〈ε′′ + n′′ω|. (40)

Using the fact that in the spectral representation ofH0 the difference of the free resolvents
occurring in (40) is the following function of the quasi-energyε

1

e−iεT − e−i(ε′′T−iν)
− 1

e−iεT − e−i(ε′′T+iν)
→ 2π

T
eiεT δ(ε − ε′′) asν → 0 (41)

one finds that theS-operator can be reduced to the quasi-energy shell matrixS(ε)

〈ε + nω|S|ε′ + n′ω〉 = δ(ε − ε′)〈n|S(ε)|n′〉 (42)

with 〈n|S(ε)|n′〉 given by

〈n|(S(ε)− I )|n′〉 = 2πeiεT

T
lim
η→0
〈ε + nω|T (e−i(εT+iη))|ε + n′ω〉 (43)

with ε, n andn′ such that bothε + nω andε + n′ω belong to the spectrum [0, E0] of H0.
The derivation presented here is formal, but it can be justified by adapting the proofs

of section (6.2) of [10] to our case.

4. Scattering and resonances

We apply the general results of section 3 to our system. From (5) we haveW = µU0|ϕ〉〈ϕ|
so (39) gives

T (z) = µ(1− µ〈ϕ|R(z)U0|ϕ〉)U0|ϕ〉〈ϕ|. (44)

But in view of (16) and (17)

µ〈ϕ|R(z)U0|ϕ〉 = 〈ϕ|R0(z)U0|ϕ〉
g(z)

= 1+ z〈ϕ|R0(z)|ϕ〉
g(z)

= 1− 1

µg(z)
(45)

so that

T (z) = 1

g(z)
U0|ϕ〉〈ϕ|. (46)

Hence according to (43) and (24) the scattering matrix is

〈n|S(ε)|n′〉 = δn,n′ + 2π

T

(
ϕ(ε + nω)ϕ∗(ε + n′ω)
−A(εT )+ iB(εT )

)
(47)
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with ε + nω andε + n′ω in [0, E0]. The energy conserving transitions
n = n′ are referred to as the elastic channel, and the transitions withn 6= n′ (corresponding
to emission or absorbtion of(n− n′)ω energy quanta) as the inelastic channels.

If T < T0, necessarily(n, n′) = (0, 0); only the elastic channel is open and from (25)

S00(ε) ≡ 〈n = 0|S(ε)|n′ = 0〉 = A(εT )+ iB(εT )

−A(εT )+ iB(εT )
06 ε 6 E0 (48)

is a pure phase factor.
If T0 < T < 2T0, in addition to the elastic channel(n, n′) = (0, 0), (1, 1), one has

the two inelastic channels(1, 0) and (0, 1) allowing for the emission or absorbtion of one
quantumω. As T increases more inelastic channels become open. It is not hard to verify
on (47) that theS-matrix satisfies the general unitarity relation∑

n

|〈n|S(ε)|n′〉|2 =
∑
n′
|〈n|S(ε)|n′〉|2 = 1. (49)

We now come to the relation of theS-matrix with the cyclic states and the question of
the resonances.

First, we verify Levinson’s theorem. Suppose thatT < T0 and that we have a cyclic
state as described in section 2. We define the scattering phase shiftδ(ε) in the elastic
channel by

S00(ε) = e2iδ(ε) (50)

i.e. from (48)

δ(ε) = arctan

(
B(εT )

A(εT )

)
+ π

2
− π

2
< arctanx <

π

2
. (51)

In view of (21) one hasB(E0T ) = B(θ0) = 1
2(cot( λT2 )+ h(θ0)) < 0 andB(2π) = B(0) =

1
2(cot( λT2 ) + h(0)) > 0. Eitherh(θ0) = −∞, or h(θ0) is finite andϕ(E0) = 0. Hence, in
both cases limε→E0

B(εT )

A(εT )
= −∞, and in the same way, limε→0

B(εT )

A(εT )
= ∞. This implies

δ(0)− δ(E0) = π. (52)

If there is no cyclic state, the inequality (21) does not hold:B(E0T ) andB(0) have the
same sign, andB(εT )

A(εT )
tends to∞ (or −∞) in both limits ε → E0 andε → 0, leading to

δ(0)− δ(E0) = 0. (53)

The relations (52) and (53) constitute the Levinson theorem for the present model. The
validity of Levinson’s theorem for more general time periodic potentials has been established
in [11] in the framework of the quasistationary equations.

To discuss resonances in a definite situation, we assume thatϕ(E) is differentiable and
that condition (22) in case (ii) of section 2 holds withν > 1

2. Then, writing now explicitly
the period dependence in the functionh(α, T ) (20) we have that

h(0, T ) =
∫ E0

0
dE|ϕ(E)|2 cot

(
ET

2

)
h(θ0, T ) =

∫ E0

0
dE|ϕ(E)|2 cot

(
(E − E0)T

2

)
θ0 = E0T

(54)

are finite forT > 0; h(0, T )→∞ asT → 0 and is decreasing in the interval 0< T 6 T0.
Likewise h(θ0, T ) → −∞ as T → 0 and increases in this interval and both functions
coincide atT0. In view of condition (21), for fixedλ, this determines a number of intervals
of stability (Ti, T ′i ), i = 1, 2, . . ., where we will have a cyclic state (see figure 1). AsT
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varies in(Ti, T ′i ) andλ > 0, the cyclic state emerges from the continuum thresholdθ0 at Ti
and migrates towards the other threshold 2π = 0 (mod 2π) where it is absorbed atT ′i .

More specifically, consider a periodT in the interval(Ti, T ′i ), T close toTc ≡ T ′i and
define the functionB(α, T ) on the whole circle by

B(α, T ) = 1

2

(
cot

(
λT

2

)
+ h(α, T )

)
(55)

for θ0 < α < 2π and by expression (26) for 0< α < θ0. The conditions above
on ϕ(E) imply that B(α, T ) is continuously differentiable inα and T for (α, T ) in a
neighbourhood of(0, Tc) and ∂

∂α
B(α, T )|α=0,T=Tc > 0. Then the implicit function theorem

ensures thatB(α, T ) has a differentiable zeroα(T ) for T in a neighbourhood ofTc and
B(α, T ) ∼ b(α − α(T )), b > 0. For T below Tc, α(T ) = αc = εcT is the eigenphase of
the cyclic states (see (20)), whereas forT just aboveTc, α(T ) = αr = εrT is the location
of a resonance with quasi-energyεr . Indeed, from (48),|S00(ε)−1|2 (and the cross section
which is proportional to it) will have the Breit–Wigner form

|S00(ε)− 1|2 = 2(A(εT ))2

(B(εT ))2+ (A(εT ))2

∼ 202
r

(ε − εr)2+ 02
r

(56)

whenT is close toTc (T > Tc), and |ε − εr | � εr . By (25) and (22) the width0r of the
resonance (the inverse life time) behaves as

0r = A(εrT )

bT
= π

bT 2
|ϕ(εr)|2

=∼ constantε2ν
r ∼ constant(T − Tc)2ν (57)

asT → Tc.
Note that atT = Tc we still have a cyclic state with quasi-energyεc = 0 that coincides

with the threshold of the continuous spectrum. Since the ratioB(εT )

A(εT )
behaves there as

ε1−2ν →∞, ε → 0, one still obtains the Levinson relation (52).
All these considerations can of course be reproduced for periodsT in the vicinity of

Ti when the eigenphase of the cyclic state is close to the other thresholdθ0. The number
of intervals of stability giving rise to cyclic states decreases as the coupling constantλ

becomes weaker. A special situation is obtained for the valueλ = E0
2 such that cot( λT2 )

has its first zero atT0. Then a cyclic state can remain present until the closure of the gap
at the critical periodT0 and be transformed into a resonance beyondT0.

If 0 < ν 6 1
2, the functionB(α, T ) is still continuous but no more differentiable, and

threshold behaviours must be studied in more detail. Ifϕ(E) does not vanish at one or the
other threshold, we will have no resonance there. Nothing is said here about resonances
that may appear far from the thresholds due to particular properties of the functionϕ(E).

For brevity, we have assumed that the spectrum ofH0 is simple. If it has a multiplicity
indexed by parametersσ it suffices to replace the (improper) eigenenergy kets|E〉 by |E, σ 〉.
The matrix elements ofS(E) will be indexed both byσ and the channel indicesn, but the
results remain the same.

We conclude this section with an example. Consider the scattering of an electron on the
one-dimensional lattice{ja, j = . . . ,−1, 0, 1, . . .}, with spacinga, by a kicked impurity
λf (t)|ϕ〉〈ϕ| located at the originj = 0, ϕ(j) = δj,0. The free HamiltonianH0 = − 1

21a

is the finite difference Laplacian with energy dispersionE(p) = 1− cosp, −π
a
6 p 6 π

a
.
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In the spectral representation|E, σ 〉 of H0 (σ = ±1 corresponding to positive or negative
momentump), one finds

ϕ(E, σ) = 〈E, σ |ϕ〉 = 1√
2π

1

(1− (E − 1)2)1/4
. (58)

Hereϕ(E, σ) does not vanish at the endpointsE = 0 andE = 2 of the free spectrum so
that we are in case (i) of section 2. There will be a cyclic state for all periods (λT

2 6= nπ )
up to T0 = π but it will not give rise to a resonance.

5. Concluding remarks

In this paper, we have analysed a solvable model of a scattering system with a time periodic
interaction whose Floquet operator has both continuous and point spectrum. We emphasize
that this situation is much more general than that presented by means of this particular
example†. Consider a free HamiltonianH0 that has absolutely continuous spectrum in
[0, E0] and a bounded smooth time periodic interactionV (t) with periodT , and letU(0, t)
be the evolution operator associated to the HamiltonianH(t) = H0 + V (t). Suppose for
instance that, in addition to continuous spectrum in [0, E0], the time-averaged Hamiltonian
H̄ = 1

T

∫ T
0 dt H(t) has an isolated non-degenerate eigenvalueĒ. Proceeding as in the proof

of proposition 2 of [8] (the high-frequency limit), one obtains the operator norm estimate

‖U(0, t)− e−iH̄ t‖ = O(T ) (59)

provided thatt is bounded away from 0. Fixt > 0 (small) such that e−iĒt is an isolated
eigenvalue of e−iH̄ t on the unit circle. Then Rellich’s theorem ensures that forT small
enough,U(0, t) also has an eigenvalue e−iα(t) close to it. Fort of the form t = NT ,
N integer, we have(U(0, T ))N = U(0, NT )), and this implies that the Floquet operator
U(0, T ) has also an eigenvalue e−iαc with α(NT ) = Nαc In particular, the qualitative
findings of this paper remain true iff (t) (2) is replaced by a smooth periodic function oft .

This shows that this mechanism gives rise to cyclic states of the Floquet operator and is
very general, provided that the averaged HamiltonianH̄ has eigenvalues and the spectrum
of H0 is bounded. If the spectrum ofH0 consists of a finite number of bands, cyclic states
can appear in all the gaps at high frequency. IfH0 is unbounded, a rank 1 perturbation may
induce qualitative changes: for instance the discrete spectrum of the free rotator may be
transformed into a singular continuous one [13, 14]. In our class of models, if the spectrum of
H0 is not bounded, say extends on [0,∞), U(0, T ) will also have an absolutely continuous
spectrum on the circle, but without gap however short the period may be. Then it is likely
that the eigenstates of̄H are turned into resonances of the Floquet operator forT > 0. It
is an open question to know if the Floquet operator can have other types of cyclic states
embedded in its absolutely continuous spectrum. We plan to come to these problems in
future work.
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